Generative Adversarial Network (GAN) from scratch | PyTorch

Its a code heavy and rather in-depth course to master Generative Adversarial Network implementation.

Generative Adversarial Network (GAN) from scratch | PyTorch
Generative Adversarial Network (GAN) from scratch | PyTorch

Generative Adversarial Network (GAN) from scratch | PyTorch udemy course free download

Its a code heavy and rather in-depth course to master Generative Adversarial Network implementation.

What you'll learn:

  • Learn how the basic principles of generative models work
  • Build & Implement a GAN from scratch (Generative Adversarial Network) in Pytorch and Tensorflow
  • How to improve the training stability of GANs
  • Under the hood understanding of the Generator and Discriminator Mechanism

Requirements:

  • Basic Python, Basic Understanding of CNN, Convolutional Neural Network
  • Basic conceptes of deep learning and Neural Network flow

Description:

GANs have been one of the most fascinating developments in Deep Learning and Machine Learning recently.

Also now the technologies around GAN have become so mature, that more and more Industries and Companies are adopting GAN to solve many of the regular problems. (Down below I have mentioned fa ew of them). And hence, the implementation from scratch of various GAN architectures, has also become one of the most frequent take-home exercise given by Companies before recruitment for Computer Vision / Deep Learning positions.


This is a code-heavy course and with a focus on really understanding and being able to implement the underlying architecture of the super famous GANs.

It's a comprehensive seven and half hours (7.5 Hours) of video course to Generative Adversarial Networks (GANs) with each line of code explained while implementing them.


The theories are explained in-depth and in a friendly manner.

In this course, I have covered the following six Architecture.

  1. Conditional GAN

  2. DCGAN

  3. WGAN without Gradient Penalty

  4. WGAN WITH Gradient Penalty

  5. CycleGAN

  6. BiCycleGAN

All the source codes in Python are given as an attachment to each section and also as a zipped file for all of them together.


My courses are the ONLY courses where you will learn how to implement Generative Models machine learning algorithms from scratch

What Can Generative Models do?

Generating novel data samples such as images of non-existent people, animals, objects, etc. Not only images, but other types of media can be generated in this way as well (audio, text).

Image inpainting — restoring missing parts of images.

Image super-resolution — upscaling low-res images to high-res without noticeable upscaling artefacts.


Domain adaptation — making data from one domain resemble the data from the other domain (e.g. making a normal photo look like an oil painting while retaining the originally depicted content).

Denoising — removal of all kinds of noise from the data. For example, removing statistical noise from x-ray images fits medical needs, which will be described in our use cases.

GANs applications are able to solve different tasks:

Generate examples for Image Datasets

Image-to-Image Translation

Text-to-Image Translation

Semantic-Image-to-Photo Translation

Face Frontal View Generation

Generate New Human Poses

Photos to Emojis

Photograph Editing

Face Aging

Photo Blending

Super Resolution

Photo Inpainting

Clothing Translation

Video Prediction

3D Object Generation


By the end you’ll be able to

• Build and train not only the 6 Different GAN Networks covered in this course, but will be able to extend this knowledge to be able to implement various other GAN architecture.


Suggested Prerequisites:

  • Python

  • The concept of Gradient descent

  • Some familiarity with how to build a feedforward and convolutional neural network in PyTorch and TensorFlow


WHAT ORDER SHOULD I TAKE YOUR COURSES IN ?:


Mostly, each of the GAN architectures are independently developed. So basically you can follow each of the 6 GANs implementations independently. However, if you are rather new to the conceptes of Convolutional Neural Network and the very fundamentals of Deep Neural Network, then I suggest to start with DCGAN (which is the simplest among them all ).

Who this course is for:

  • Data scientists willing to take their knowledge and skills to the next level in the area of GANs and Computer Vision
  • Research / Postgraduate Students willing to get a comprehensive overview of recent advancement made in the area of GANs
  • Deep Learning practitioners willing to apply GANs at work in production environments
  • Enthusiasts willing to stay up to date on GANs research and development
  • Deep learning beginners willing to master the building blocks of modern GANs
  • Anyone who wants to improve their deep learning knowledge

Course Details:

  • 9 hours on-demand video
  • 26 downloadable resources
  • Full lifetime access
  • Access on mobile and TV
  • Certificate of completion

Generative Adversarial Network (GAN) from scratch | PyTorch udemy courses free download

Its a code heavy and rather in-depth course to master Generative Adversarial Network implementation.
Tags: Development Course, Data Science Course, Generative Adversarial Networks (GAN) Course, udemy, free online course, udemy courses, freecourse, freecoursesite, udemycoursefree, udemy free courses free online course udemy, freecoursesite, freecourse, course era free courses, udemy courses for free, coursera free courses, tutorial free download, free udemy paid course, udemy courses free download, udemy course download, udemy downloader, course free download, downloadfreecourse